Stabilizing liquid drops in nonequilibrium shapes by the interfacial jamming of nanoparticles.

نویسندگان

  • Mengmeng Cui
  • Todd Emrick
  • Thomas P Russell
چکیده

Nanoparticles assemble at the interface between two fluids into disordered, liquid-like arrays where the nanoparticles can diffuse laterally at the interface. Using nanoparticles dispersed in water and amine end-capped polymers in oil, nanoparticle surfactants are generated in situ at the interface overcoming the inherent weak forces governing the interfacial adsorption of nanoparticles. When the shape of the liquid domain is deformed by an external field, the surface area increases and more nanoparticles adsorb to the interface. Upon releasing the field, the interfacial area decreases, jamming the nanoparticle surfactants and arresting further shape change. The jammed nanoparticles remain disordered and liquid-like, enabling multiple, consecutive deformation and jamming events. Further stabilization is realized by replacing monofunctional ligands with difunctional versions that cross-link the assemblies. The ability to generate and stabilize liquids with a prescribed shape poses opportunities for reactive liquid systems, packaging, delivery, and storage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlled jamming of particle-laden interfaces using a spinning drop tensiometer.

When particles adsorb at a fluid/fluid interface at a sufficiently high concentration, the interface loses mobility and displays solidlike characteristics, a phenomenon called "interfacial jamming". Jamming can arrest interfacial tension-driven morphological coarsening in liquid/liquid or gas/liquid systems and therefore stabilize two phase morphologies with unusual interfacial shapes, for exam...

متن کامل

Determination of Interfacial Area in Gas-Liquid Two Phase by Light Transmission

The purpose of the present paper is to develop light beam method to measurement of interfacial area in a rectangular gas-liquid bubble column. Total interfacial area can be determined in bubble column filled by transparent liquid by light transmission method. According to pervious researches, the fraction of parallel light is function of interfacial area and optical path l...

متن کامل

Prediction of Dispersed Phase Holdup in Scheibel Extraction Columns by a New Correlation

In this study, the effect of operating parameters on dispersed phase holdup in liquid-liquid extraction process has been investigated. Three chemical systems (Toluene/Water, Butyl acetate/Water, and n-Butanol/Water) were utilized and holdup was considered in a wide range of interfacial tensions through a Scheibel extraction column. Various rotor speeds were examined on the certain velocities of...

متن کامل

Thin Film Heterogeneous Ion Exchange Membranes Prepared by Interfacial Polymerization of PAA-co-Iron-Nickel Oxide Nanoparticles on Polyvinylchloride Based Substrate

In this research thin film heterogeneous cation exchange membrane was prepared by interfacial polymerization of polyacrylic acid-co-iron nickel oxide nanoparticle son PVC based substrate. Spectra analysis confirmed graft polymerization conclusively. The SEM images showed that polymerized layer covers the membranes by simple gel network entanglement. Results exhibited that membrane water content...

متن کامل

Pii: S0377-0257(00)00167-1

Deformation and breakup of a viscous drop in a Bingham liquid is investigated numerically with a volume-of-fluid scheme. Initially, a spherical drop is placed between two moving parallel plates. For our parameters, the matrix liquid has yielded. The competing effects driving the motion are the shear and interfacial tension. When interfacial tension effects dominate, the drop evolves to a steady...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 342 6157  شماره 

صفحات  -

تاریخ انتشار 2013